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Abstract

To aid walkers in navigating their ways within the campus of the University of
Minnesota Twin Cities, we developed a navigation program that offers a selection of
algorithms, namely A* with Manhattan, A* with Haversine, Breadth-First Search,
Bidirectional Search, Dijkstra Algorithm, and Bellman-Ford Algorithm. Our results
show that the Bellman-Ford Algorithm delivers the optimal route, but it exhibits an
exceedingly high run-time and memory usage. In contrast, the Dijkstra Algorithm
produces a marginally inferior route but utilizes fewer resources. The Breadth-First
Search and Bidirectional Search algorithms require less time and space in comparison
to the previous two algorithms, however, their routes are less satisfactory. The two
variations of A* were determined to be unsuitable for this particular map, as the overall
performance is inferior to that of the aforementioned algorithms.

1 Introduction

Within the expansive campus of the University of Minnesota (UMN), strategic route plan-
ning assumes utmost significance for students who must navigate between academic buildings
to attend classes. In practicality, students frequently encounter the need to traverse consid-
erable distances across the campus in a time-constrained manner, typically within a tight
time frame of 15 minutes, to reach the designated teaching building where their next course
is scheduled. In contrast to conventional navigation methods, We aim to develop a more
optimized program with multiple algorithms to facilitate efficient route planning for stu-
dents, subsequently evaluating the comparative performance and efficiency of various search
algorithms in this program.

We extract data from OpenStreetMap (OSM) to meticulously construct a 2D campus
map of the University of Minnesota. This map was seamlessly integrated into a web page
providing users with an interactive and visually appealing interface (Figure 1). Within this
interface, users can select a start, a destination, and the algorithm they want to use to
calculate the optimal path between these two points on the map.



Through the utilization of Python programming language along with its robust NetworkX
library, we can leverage various algorithms to determine the optimal path between two points
on a given map. In our algorithm selection process, we prioritized the utilization of efficient
algorithms that have proven effective in solving similar problems. These include the widely-
used A* algorithm, the classic Dijkstra’s algorithm, the Breadth-First search algorithm, the
Bidirectional search algorithm, and the Bellman-Ford algorithm.

This paper will discuss the implementation of the program and evaluate the performance
of the aforementioned algorithms on the University of Minnesota map. The paper is struc-
tured as follows. Section 2 covers a literature review of the tools and algorithms used in this
project. Section 3 delineates the process of implementing the program and the references for
the algorithms. Section 4 documents the design and results of the algorithm performance
comparison experiment, which incorporates an in-depth analysis of the results. Section 5
gives the concluding remarks for the project. Finally, Section 6 delineates the specific division

of labor involved in the project.
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Figure 1: The user interface of the UMN Interactive Map

2 Background Knowledge

Since this project aims to help users find the shortest path within the UMN Twin Cities
campus by utilizing OpenStreetMap (OSM), NetworkX, and Python, along with algorithms
including A* and Dijkstra’s algorithms, the background knowledge is separated into three
parts. First, it will introduce these tools and algorithms by providing an overview of their
key features and capabilities and explore how these methods have been employed in similar
studies when solving real-world path-finding problems. Second, it will examine other studies



using similar algorithms to ours. Finally, it will summarize the experimental approaches and
conclusions derived from these studies.

2.1 Tools
2.1.1 OSM

Given that this project relies on map data from OpenStreetMap (OSM), we need to assess
the trustworthiness of the data. Grinberger’s study [4] offers an academic perspective on
evaluating the reliability of OSM data, focusing on three perspectives of OSM data: Appli-
cation of OSM data, OSM data quality, and Dynamics in OSM. The study highlights the
impressive scale of the project, with almost 7.5 billion data nodes contributed by 1.8 million
users as of March 2022. It is also common to see scholars incorporate OSM data by con-
tributing mapping resources into more advanced models, especially machine learning. The
analysis of OSM data quality provides evidence of a fair accuracy of OSM data on tourism.
However, since the OSM data is ”crowd-sourced”, i.e., the communities might have different
ways of communication and evaluations of science, the article points out that it requires
more understanding to utilize OSM data. In light of these findings, we are confident in the
reliability of OSM data, though we might spend more time on data processing.

2.1.2 NetworkX, Python (PyCharm)

To improve the efficiency of data manipulation and the quality of data visualization, the
project will utilize NetworkX as an important tool while implementing our algorithms in
Python programming language which is easy to code and document. In Hagberg’s article
[5], it introduces how flexible NetworkX is when representing different types of graphs, edges,
and nodes that are fundamental for networks like ours. Beyond this, NetworkX also provides
many functions to calculate the statistics of the network like connected nodes, coefficient, etc.
By utilizing the ”dictionary of dictionaries” as its basic data structure for graphs, NetworkX
facilitates finding the shortest path in a weighted graph and simplifies the algorithms required
for this project. Additionally, NetworkX supports the integration of external tools, allowing
us to incorporate more tools like Graphviz and Matplotlib into NetworkX to generate more
detailed visualizations for the project.

2.2 Algorithms
2.2.1 A*

As A* and Dijkstra are two common algorithms to discuss and be implemented by scholars,
Aziz [3] conducted an experiment using a 25x25 grid-based environment to compare the
performances of A* Ant Colony Optimization (ACO), and Dijkstra’s Algorithms. Despite
the limitations of the experiment, such as the distancing problem and different characteristics
of the three algorithms, A* is shown to win the game.



Zeng [10] performed an empirical study on road network data in California, demonstrat-
ing that “on real road networks, A* outperforms the best implementations of the Dijkstra
algorithm by a significant margin.” The superior performance of A* was achieved through
the use of spatial coordinates to refine the search for the shortest path. The authors note
that the potential of the A* algorithm can be further enhanced by improving its heuristic
function. By generating more accurate estimated completion costs, the number of visited
nodes and algorithm run-time can be reduced. This observation highlights the flexibility
of the A* algorithm and motivates us to improve the A* algorithm for achieving better
performance in this project.

2.2.2 Dijkstra

Analogous to our project, the self-driving automobile proposed in He’s application [6] of
Dijkstra’s algorithm in finding the shortest path shares the same objective, but with the
added dimension of determining the shortest distance between two regions. The authors
have directed their focus towards the utilization of Dijkstra’s algorithm and posited that
"Dijkstra algorithm is faster than other algorithms for it can calculate the shortest length to
every point”. The algorithm employs a pyramid tree structure to pinpoint all vertex nodes
that fall within the range of interest, as well as a heap to preserve distances and extract nodes
with the least distance. These salient features impel us to prioritize testing and deploying
Dijkstra’s algorithm in our research project.

Fitro’s experiment [2] which incorporates Geographic Information System (GIS), Google
Map API, and Dijkstra’s algorithm to find the shortest path at Taman Subdistrict, Indonesia,
mentions that Dijkstra’s algorithm spends a large memory space. In the experiment, the
author introduces a node combination technique to reduce memory usage, i.e., "merging two
nodes that have the closest distance”, and the optimal paths are shown in the result.

Wayahdi [8] presents a further comparative analysis of the efficiency of Greedy, A*, and
Dijkstra, for determining the shortest path in a given graph. The Greedy algorithm, while
speedy, may not necessarily guarantee a solution. On the other hand, the A* algorithms are
relatively more efficient, but their performance is contingent upon complex data. In contrast,
the Dijkstra algorithm invariably produces the optimal outcome, making it the ideal choice
for shortest path determination. However, it may take longer to solve the problem than the
other two algorithms. Despite this drawback, the author unequivocally recommends employ-
ing the Dijkstra algorithm for solving problems involving complex searches for determining
the shortest path.

2.2.3 Bellman-Ford

The Bellman-Ford algorithm is also widely utilized for solving the problem of identifying
the shortest path between two points. In AbuSalim’s comparative analysis [1], the article
compares the Dijkstra and Bellman-Ford algorithms for optimizing the shortest path. The
author of this analysis notes that both algorithms are highly effective for determining the
single-source shortest path. Bellman-Ford, as a dynamic algorithm, can efficiently compute



the shortest path even in the presence of negative edge weights. Additionally, it performs
better on smaller graphs. On the other hand, Dijkstra’s algorithm is better suited for
larger graphs and positive edge weights, with a time complexity of O(|E|+|V|log|V']), while
Bellman-Ford’s algorithm has a complexity of O(|V| *|E]). In general, Dijkstra’s algorithm
is more suitable for real-time applications than Bellman-Ford’s. We will consider Dijkstra’s
algorithm the preferred option in our project. Nonetheless, we will also conduct experiments
to evaluate the efficacy of the Bellman-Ford algorithm, which is still widely recognized as a
highly effective algorithm for solving shortest-path problems.

2.2.4 Conclusion on Algorithms

Academically, we contend that the Greedy algorithm is an inadequate algorithmic choice
due to its incapacity to yield a solution. Based on the comparative analysis presented in
the extant literature, we contend that A* and Dijkstra algorithms are the two most highly
regarded algorithms for implementation in this project. Our team is eagerly anticipating the
practical application of both algorithms in our project to evaluate their effectiveness. Other
algorithms like Bidirectional Search and Breadth-First Search might be implemented based
on Russell’s Al book [7] but will not be discussed here.

2.3 Background Conclusion

Upon reviewing studies on the reliability of OSM data, examining the capabilities of Net-
workX and its powerful visualization tools, and analyzing different combinations of algo-
rithms for solving the path-finding problem, we have ensured that our project is feasible
and "playable”. Moreover, we have found an exemplary application by Yan and Wong from
The Hong Kong University of Science and Technology (HKUST), who developed the Path
Advisor[9]. This tool provides 2D, 3D, and VR views of the campus map tool for the short-
est path. If this project can be further developed, we hope that it can become the ”Path
Advisor” for the University of Minnesota Twin Cities.

3 Approach

Firstly, the map section holds paramount importance on our web pages. It serves as a
crucial tool for our users to identify their starting and ending points by simply clicking on
the map. Moreover, the map section also serves as an intuitive visual representation of the
route planned by our algorithm. To achieve this functionality, we utilize the Overpass Turbo,
a web-based data filtering tool designed for OpenStreetMap (OSM). Additionally, overpass-
turbo enables us to extract specific map data through targeted queries. For this project, we
utilized it to extract GeoJSON data of streets, sidewalks, and buildings within the University
of Minnesota, which was subsequently employed for algorithmic testing purposes. Leveraging
convenient APIs from Mapbox, a software company that provides tools for online maps, we
have successfully embedded its mapping function into our web page through HTML and



JavaScript, allowing for seamless interaction with the map. There are two layers of the map
on the web page, the client’s layer of the map is the one shown in Figure 1. Behind it, the
actual map that is plotted out by two Python libraries, GeoPandas and Matplotlib, is shown
in Figure 2. This map is where the algorithms work.
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Figure 2: The Server’s layer of the map.

Upon conducting a thorough literature review of the relevant algorithms, the decision was
made to incorporate five algorithms, namely A* Algorithm, Breadth-First Search, Bidirec-
tional Search, Dijkstra’s Algorithm, and Bellman-Ford algorithm, into the program. Regard-
ing A*, we will incorporate it with two heuristic functions, namely Manhattan distance and
Haversine distance, to determine which one can more effectively enhance A*. It’s worth not-
ing that the weight on the graph is calculated by the Haversine distance for better accuracy
of the distance on the map.

The pseudo-codes outlined in the fourth edition of Artificial Intelligence were consulted
(Figure 3 and 4), and based on these references, we implemented Breadth-First Search and A*
Search both in Python and JavaScript. The A* Search is modified from the Best-First Search
by using the evaluation function: f(n) = g(n) 4+ h(n). Two heuristic functions, Manhattan
Distance and Haversince Distance, are implemented for the A* algorithm. The Manhattan
Distance is widely used in grid-based systems like Aziz’s experiment [3]. It calculates the sum
of the absolute differences between the horizontal and vertical coordinates. The Haversine
function is typically used to find distances between two points on a sphere like the Earth,
given their longitudes and latitudes. This makes it ideal for geographical applications, such
as mapping and navigation systems. In our project, we plan to implement both of them to
present a difference in efficiency in time and memory usage of the A* algorithm with two
different heuristic functions.

The experiment conducted by Fitro [2] also employed the Dijkstra algorithm in the
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function BREADTH-FIRST-SEARCH( problem) returns a solution node or failure
node <+ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier < a FIFO queue, with node as an element
reached < {problen.INITIAL}
while not 1S-EMPTY (frontier) do
node + POoP(frontier)
for each child in EXPAND(problem, node) do
54— child. STATE
if problem.1s-GOAL(s) then return child
if s is not in reached then
add s to reached
add child to frontier
return failure

Figure 3: Breadth-First-Search algorithm pseudo-code in Artificial Intelligence 4th Edition|[7]

function BEST-FIRST-SEARCH(problem,f) returns a solution node or failure
node +— NODE(STATE=problem.INITIAL)
frontier < a priority queue ordered by f, with node as an element
reached < a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do
node < POP(frontier)
if problem.1s-GoAL(node.STATE) then return node
for each child in EXPAND(problem, node) do
54— child.STATE
if 5 is not in reached or child PATH-COST < reached|s].PATH-COST then
reached|s) <+ child
add child to frontier
return failure

function EXPAND(problem, node) yields nodes
54— node. STATE
for each action in problem.ACTIONS(s) do
s" < problem.RESULT(s, action)
cost ¢ node PATH-COST + problem. ACTION-COST(s, action,s')
yield NODE(STATE=s', PARENT=node, ACTION=action, PATH-COST=cost)

Figure 4: Best-First Search algorithm pseudo-code in Artificial Intelligence 4th Edition[7]



investigation of the shortest path problem between two points. In reference to the pseudo-
code furnished by the study, we have implemented the Dijkstra algorithm in our program. For
Bidirectional Search, we employed Breadth-First Search from two different starting points.
Figure 6 presents the pseudo-code for the algorithm. In AbuSalim’s comparative analysis[1],
the Bellman-Ford algorithm was utilized to address the Single-source shortest path problem.
Following the provided code, we implemented the Bellman-Ford algorithm to find the shortest
path between two points. The corresponding pseudo-code is presented in Figure 7.

Within the website’s interface, a comprehensive menu comprising all the implemented
algorithms is made available. This enables users to exercise their discretion in selecting the
algorithm that best suits their preferences for route calculation.

We have devised three distinct methods for users to designate their origin and destination
points. Specifically, users are afforded the option to either indicate a location by directly
clicking on the map, inputting coordinates, or specifying building names. If a user identifies
a point that does not lie on a roadway, the system will promptly compute and present the
nearest roadway data point as a substitute for the user’s initial selection.

The program can be operated in two distinct modes, namely Normal mode and Test
mode. Upon selecting Normal mode, the program will employ the algorithm selected by the
user to directly calculate the shortest path between the starting point and the ending point,
subsequently displaying it on the map.

Alternatively, upon choosing Test mode, the program will execute the algorithm 100
times, recording the corresponding run time and memory usage of each instance. However,
it has come to our attention that certain instances of memory usage can display negative
values, attributed to underlying issues related to JavaScript and/or browser malfunctions.
Such cases are appropriately labeled as ”Invalid”, and our function is designed to filter and
disregard such invalid data points. In addition, the function presents the number of valid
cases during each session, which is displayed on a pop-up window. Following the completion
of the test, the program will display the shortest path length determined by the algorithm,
the average run time, and the memory usage of the 100 trials.

Dijkstra Algorithm

Set adjacency matrix from graph G

s = start node
g = goal node
bestnode = s

while bestnode ? g
for all successors of bestnode do
calculate the distance from s to these successors

end for
best successor = successor with minimum distance from s
change bestnode with this current best successor

end while

Figure 5: Dijkstra Algorithm pseudo-code in Fitro’s experiment [2]
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Figure 6: pseudo-code for Bidirectional Search

function BELLMAN-FORD(G, source, destination)

dist[source] =0
for i from [/ to |¥]-1 do

for each edee (u, v, weight) in G do
if dist[u] + weight < disf[v] then
dist[v] = dist[u] + weight

if dist|destination) is not infinity then

return dist[destination]

else

return failure

Figure 7: pseudo-code for Bellman-Ford Search



4 Experiment

This section is organized into three distinct sections. The initial part details the experimental
design, outlining the structure of the tests conducted, and elaborating on the methodolo-
gies employed for the collection and visualization of data. The second section presents the
outcomes derived from the experimentation, coupled with comprehensive explanations for
clarifying these findings. In the end, the last section provides an in-depth analysis of the
aggregated results, a conclusive determination of the optimal choice among five algorithms,
and a discussion of the limitations of the program and the experiment.

4.1 Design

Before the commencement of the experimental, we selected three distinct sets of origin and
destination pairs. The first set encompassed departures from Anderson Hall (44.9723588,
-93.2425962), with the destination being the University Recreation and Wellness Center
(44.9751693, -93.2303338). The second group entailed departures from Eddy Hall (44.9777659,
-93.2363017), with the destination being Frontier Hall (44.9712939, -93.2282896). Lastly,
the third group involved departures from Walter Library (44.9752741, -93.2357297), with
the destination being Boynton Health Service (44.9722088, -93.2340253).

In the experiment, we sequentially applied A* with Manhattan heuristic, A* with Haver-
sine heuristic, Breadth-First search, Bidirectional Search, Dijkstra, and Bellman-Ford algo-
rithm to calculate optimal paths between each set of origins and destinations. To mitigate
potential errors, we activated the test mode of the program, wherein each algorithm un-
dergoes 100 consecutive runs and returns averages of the results for enhanced accuracy and
reliability. For each set of origins and destinations, we conducted 20 test runs for each
algorithm and recorded the running time, memory usage, and route length in each run.

Subsequently, we analyzed the collected data and constructed histograms to represent
the distribution of path lengths calculated by all algorithms for each group of locations. Ad-
ditionally, we created line graphs to illustrate the running times and memory usage for each
algorithm. This comprehensive visual representation allowed us to compare the performance
of different algorithms more intuitively.

The outcomes for each table will be collected utilizing identical device, browser, and
server settings. After the completion of data collection for a given table, the browser will
undergo a refresh and be prepared for the subsequent table.

By adopting this rigorous approach, we aimed to provide a robust evaluation of the
efficiency and effectiveness of the algorithms in our study. The utilization of multiple algo-
rithms and repeated runs, along with the graphical representation of results, contributes to
a deeper understanding of the comparative performance of these algorithms in the context
of our study.
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4.2 Results

This section discusses the results obtained from the aforementioned experiments. The ag-
gregation of memory usage data stems from a non-standard feature named ”enable-precise-
memory-info” and is specific to the Chrome browser. It is worth noting that this approach
may not be compatible with alternative web browsers.

During the experiment, our attention was initially directed toward the Bellman-Ford
algorithm. While other algorithms typically complete calculations and yield results within
1-2 seconds, the Bellman-Ford algorithm required approximately thirty seconds to conclude a
test run. As the disparity in the run-time and memory usage data between the Bellman-Ford
algorithm and the other algorithms was significantly large, the former’s data was excluded
from the line chart to prevent it from adversely affecting the visual representation of the
entire chart. Upon comparing the data of Bellman-Ford (Figure 8) with that of the other
algorithms (Figure 9, Figure 10), it was observed that the Bellman-Ford algorithm consumed
almost a hundred times the resources used by the other algorithms. Consequently, it can
be deduced that the Bellman-Ford algorithm necessitates a substantial amount of resources
to function efficiently in this program. However, upon evaluating the paths computed by
several algorithms (Figure 11), it was found that Bellman-Ford produced the shortest path
among all the algorithms employed in three experiments.

From a resource consumption standpoint, Bidirectional Search exhibits significantly lower
data usage compared to other algorithms, positioning it as the fastest and most cost-effective
option within the program. However, despite its expedient time and space performance, it
yielded the worst path in all three experiments. This was particularly evident in the third
experiment, where the generated path length was found to be twice that of other algorithms.

The Breadth-First Search algorithm also exhibits a notable degree of low resource oc-
cupancy rate, second only to the Bidirectional Search algorithm. However, in the first and
third experiments, the path length as determined by Breadth-First Search is significantly
lower than the path length computed by Bidirectional Search. Additionally, BFS consis-
tently yields path lengths that are proximal to both the average and median values among
all algorithms in all three experiments. It was a matter of surprise to us to observe that
Breadth-First Search yielded comparable or superior results in comparison to the A* algo-
rithm.

In each of the three experiments conducted, Dijkstra’s algorithm computed routes that
were highly comparable to those produced by the Bellman-Ford algorithm. While the route
length of Dijkstra’s algorithm was marginally greater than Breadth-First Search and A*
in the third experiment, its routes in the first and second experiments were significantly
more optimal than those generated by the former two algorithms. In terms of resource
occupancy, Dijkstra’s algorithm ranks second to Bellman-Ford. However, the time and space
performance of Dijkstra’s algorithm is only marginally inferior to that of other algorithms
and is not characterized by a significant gap in performance, as is the case with Bellman-Ford.

The empirical analysis shows that A* algorithm’s run-time and memory usage are com-
parable to the mean performance. Specifically, the overall resource consumption of A* algo-
rithm with Haversine heuristic is marginally higher than that of A* algorithm with Manhat-
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tan heuristic. Nevertheless, the discrepancy is insignificant. Furthermore, the computational
time of both A* algorithms is marginally higher than Breadth-First Search algorithm. The
memory utilization of A* algorithms is twice that of Breadth-First Search. Both heuristic
functions in A* algorithm yield the same optimal path. In the first experiment, the route
computed by Breadth-First Search outperformed the one computed by A*. In the other two
experiments, BFS and A* returned the same results.

Result 1D Start inati ge Time Taken Average Memory Distance Traveled
{in milliseconds) Used (in Bytes) (in Kilometers)
1 | Anderson Hall University Recreation 24362 6460210.26086957 1.1908
and Wellness Center
2 23621 5655728.92307692
3 23451 5731753.6
4 24024 5583015.11111111
5 24390 6037936 66666667 |
6 230.64 5738809.92
7 23401 5688903 |
8 246.71 3846094 08695652
9 | 23356 5760558 60869565 |
10 23799 5758T06.26086957
11 22053 SO38RRIA6666GGT
12 . 221.63 6726373.09090909 .
13 . 23820 5910728.34782609
14 22943 5972385.92
15 23161 6021828.33333333
16 . 224 58 6063588 .
17 . 22195 5955441.5 .
18 21828 669634 1.09090909
19 21848 6680282.54545455
20 222.80 6704158 |
Total 4628.88 120931726.933345
Average 231.444 6046586.34666723

Figure 8: The results of the Bellman-Ford algorithm on Test 1
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Figure 9: The average running time of five algorithms in three tests. The x-axis is the id of
the 20 trials. The y-axis is the average time taken (in Milliseconds)
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Figure 11: The distance of the shortest path found by algorithms in three tests. The x-
axis is the id of the 20 trials. The y-axis is the distance of the shortest path obtained (in
Kilometers)

4.3 Analysis
4.3.1 Optimal Path

Based on the experimental results, the Bellman-Ford algorithm appears to be the optimal
choice for finding the optimal path in this program. Although its CPU running time is
considerably longer than other algorithms during the test, in the Normal mode, which is
provided to users and does not require as many runs as the Test mode, the time gap in plan-
ning the route can be overlooked. The inferior time and space performance of Bellman-Ford
can be attributed to the immense size of the graph of the UMN map. In AbuSalim’s com-
parative analysis [1], there were also cases where the Bellman-Ford running time increased
disproportionately as the number of nodes increased exponentially. This can be attributed
to its time complexity of O(|V|*|E]). As noted in our literature review, Bellman-Ford yields
better results on smaller graphs.
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As anticipated, the Dijkstra algorithm can also be one of the most recommended methods
in this program. As elucidated by Fitro[2] and Wayahdi[8], it should be noted that the Dijk-
stra algorithm may necessitate additional time and memory resources for finding the optimal
solution, relative to other algorithms. Nevertheless, when compared to the computational
resources required by the Bellman-Ford algorithm, the resource consumption of Dijkstra is
relatively inconsequential. Despite this, the Dijkstra algorithm remains capable of producing
results that are highly comparable to those obtained by the Bellman-Ford algorithm.

The performance of the A* algorithm in this experiment was unexpected. The findings
of both Aziz[3] and Zeng[10] suggest that A* outperforms Dijkstra’s algorithm. However, it
did not achieve the anticipated level of performance. As observed in Wayahdi’s experimental
findings|8], in most scenarios, Dijkstra yielded a more optimal path than A*. We attribute
this observation to the unsuitability of the A* algorithm for the map pattern of UMN, as
the heuristic calculated based on this map does not effectively contribute to the algorithm’s
computations, thereby resulting in sub-optimal outcomes.

The disparity among Breadth-First Search, Bidirectional Search, and other algorithms is
relatively narrower than anticipated. Nevertheless, these algorithms are not well-suited as
the recommendation algorithm of this program. Excluding A* due to its inability to func-
tion normally, one can observe that paths returned by Breadth-First Search and Bidirectional
Search are noticeably sub-optimal compared to Bellman-Ford and Dijkstra. Although their
short run-time and minimal memory usage are advantageous, they compromised the opti-
mality of the outcomes as a trade-off.

4.3.2 Limitation

As Figure 2 depicts, the actual size of the map for algorithms is limited, i.e., there could
be more paths that can be walked in the real world. The elevation of some paths in the
West Bank of the campus also becomes an obstacle for the program to find the shortest path
there and decreases the probability of finding the shortest path successfully, since the map
is two-dimensional.

Despite our efforts to maintain accuracy and consistency in the results by excluding
invalid cases and averaging our data, the performance measurement of the algorithms still
presents certain limitations. These are primarily associated with JavaScript and its garbage
collection system, especially when monitoring memory usage. These issues could potentially
skew the results of the experiment, thus representing the biggest limitation of our project.

5 Conclusion

To assist students at the University of Minnesota (UMN) in navigating around campus,
we designed a program that offers more detailed navigation than traditional methods. The
program permits users to choose their starting point and destination on the UMN map and
offers various algorithms to calculate routes. Specifically, this program incorporates six algo-
rithms, namely A* with Manhattan, A* with Haversine, Breadth-First Search, Bidirectional
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Search, Dijkstra Algorithm, and Bellman-Ford Algorithm.

Following the completion of the program’s development, a thorough testing and evalu-
ation of the six algorithms was conducted on the UMN campus map. The results indicate
that Bellman-Ford and Dijkstra are the most appropriate algorithms for application on this
map. Of the two, the Bellman-Ford algorithm provides an optimal path, while the Dijkstra
algorithm can calculate paths of comparable length using fewer resources than Bellman-Ford.
Breadth-First Search and Bidirectional Search are less resource-intensive but produce sub-
optimal paths. The results deemed A* unsuitable for use with this map, as its results were
inferior to those obtained with Dijkstra and Breadth-First Search.

If this project will undergo further development in the future, we will give due consid-
eration to augmenting it with additional architectural features such as doorways, internal
structures, stairs, and underground passages to optimize route efficiency. It is noteworthy
that several of the academic buildings at UMN are interlinked through subterranean path-
ways, and we anticipate that the inclusion of underpasses in our project will pave the way for
new and more optimal routes. In addition, we aim to enhance the overall user experience by
providing a 3D view of the routes, thereby augmenting their visual clarity and intuitiveness.

6 Contribution

Our source code ! is available via GitHub Enterprise. Here is how we separate all the work:

Project

Tasks

People

Reviewed By

Literature review

Yicheng Zhai

Junyuan Wang

OSM data collection, cleaning,
and processing

Junyuan Wang

Yicheng Zhai

Graph Creation

Junyuan Wang

Yicheng Zhai

Algorithms Implementation

Yicheng Zhai

Junyuan Wang

App setup

Junyuan Wang

Yicheng Zhai

Performance measurement

Junyuan Wang

Yicheng Zhai

Result visualization

Yicheng Zhai

Junyuan Wang

Final Report

Yicheng Zhai

Junyuan Wang

https://github.umn.edu/WANGI747 /umn-csci4511w-final-project
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